On polarized surfaces $(X,L)$ with $h^0(L)>0$, $\kappa (X)=2$, and $g(L)=q(X)$
نویسندگان
چکیده
منابع مشابه
ACM line bundles on polarized K3 surfaces
An ACM bundle on a polarized algebraic variety is defined as a vector bundle whose intermediate cohomology vanishes. We are interested in ACM bundles of rank one with respect to a very ample line bundle on a K3 surface. In this paper, we give a necessary and sufficient condition for a non-trivial line bundle OX(D) on X with |D| 6= ∅ and D 2 ≥ L − 6 to be an ACM and initialized line bundle with ...
متن کاملOn Isogenous Principally Polarized Abelian Surfaces
We study a relationship between two genus 2 curves whose jacobians are isogenous with kernel equal to a maximal isotropic subspace of p-torsion points with respect to the Weil pairing. For p = 3 we find an explicit relationship between the set of Weierstrass points of the two curves extending the classical results of F. Richelot (1837) and G. Humbert (1901) in the case p = 2.
متن کاملHumbert surfaces and the moduli of lattice polarized K3 surfaces
In this article we introduce a collection of partial differential equations in the moduli of lattice polarized K3 surfaces whose algebraic solutions are the loci of K3 surfaces with lattice polarizations of higher rank. In the special case of rank 17 polarization such loci encode the well-known Humbert surfaces. The differential equations treated in the present article are directly derived from...
متن کاملReflexive Polytopes and Lattice-Polarized K3 Surfaces
We review the standard formulation of mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, and compare this construction to a description of mirror symmetry for K3 surfaces which relies on a sublattice of the Picard lattice. We then show how to combine information about the Picard group of a toric ambient space with data about automorphisms of the toric variety to identify families ...
متن کاملOn Non-vanishing of Cohomologies of Generalized Raynaud Polarized Surfaces
We consider a family of slightly extended version of the Raynaud’s surfaces X over the field of positive characteristic with Mumford-Szpiro type polarizations Z, which have Kodaira non-vanishing H(X,Z) 6= 0. The surfaces are at least normal but smooth under a special condition. We compute the cohomologies H(X,Z) for i, n ∈ Z and study their (non-)vanishing. Finally, we give a fairly large famil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1996
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-96-01705-9